Properties of definite integrals
1. ∫ab f(x)dx = -∫ba f(x)dx
2. ∫ab f(x)dx = ∫ac f(x)dx + ∫cb f(x)dx
3. ∫0a f(x)dx = ∫0a f(a-x)dx
4. If f(-x) = f(x) (means f is an even function), then
∫-aa f(x)dx = 2∫0a f(x)dx
5. If f(-x) = -f(x) (means f is an odd function), then
∫-aa f(x)dx = 0
6. ∫0af(x)dx = ∫0af(a-x)dx and
∫abf(x)dx = ∫abf(a+b-x)dx
7. ∫0af(x)dx = ∫0a/2f(x)dx+∫0a/2f(a-x)dx
Due to the above relation
∫0af(x)dx = 0 if f(a-x) = -f(x)
∫0af(x)dx = 2∫0a/2f(x)dx if f(a-x) = f(x)
8. If f is continuous on [a,b], then the integral function defined by g(x) = ∫axf(t)dt for x Є [a,b]is derivable on [a,b], and g'(x) = f(x) for x Є [a,b].
9. If f(x0 is periodic with period T then
∫abf(x)dx = ∫a+nTb+nTf(x)dx, where n is an integer.
In particular
∫0nTf(x)dx = n∫0Tf(x)dx
If m and M are the smallest and greatest values of a function f(x) on an interval [a,b], then m(b-a)≤∫abf(x)dx≤M(b-a)
No comments:
Post a Comment