Trigonometric equations are of the form sin θ = 1/2.
The general solution to the equation is θ = nπ + (-1)ⁿπ/6
General solutions list
1. If sin θ = sin α
the θ = nπ + (-1)ⁿα (n ∈ I)
2. If Cos θ = cos α
then θ = 2nπ ± α (n ∈ I)
3. If tan θ = tan α, then θ = nπ + α (n ∈ I)
4. If sin θ = sin α
and Cos θ = cos α
then θ = 2nπ + α (n ∈ I)
The general solution of the problem is to be given as an answer to a trigonmetric equations problem, unless the solution required is specified over a specific interval or range.
Very good online lessons
http://tutorial.math.lamar.edu/Classes/CalcI/TrigEquations.aspx
http://tutorial.math.lamar.edu/Classes/CalcI/TrigEquations_CalcI.aspx
http://tutorial.math.lamar.edu/Classes/CalcI/TrigEquations_CalcII.aspx
No comments:
Post a Comment