Leibnitz Theorem and nth derivative
if u(x) and v(x)are functions possessing derivatives up to nth order.
Then
(uv)n = un(x)v(x)+nC1un-1(x)v1(x)+...+nCkun-k(x)vk(x) +...+nCnu(x)vn(x)
where uk(x)= dk(u(x))/dxk (k-th derivative of the function u(x), 1≤k≤n
n-derivatives of some elementary functions
dn(xm)/dxn = (m!xm-n)/(m-n)! if n≤m
and
dn(xm)/dxn = 0 if n>m.
dn(sin x)/dxn = sin (x + nπ/2)
dn(cos x)/dxn = cos (x + nπ/2)
dn(emx)/dxn = mnemx
No comments:
Post a Comment