Let a,b be two positive real numbers and a≠1. The real number x such that ax = b is called logarithm of b to the base a.
X = logab
Theorems
1. If a is a positive number and a≠1 then logaa = 1.
2. If a is a positive number and a≠1 then loga1 = 0
3. If a,m are positive real numbers, a≠1 then a to the power logam = m.
4. If a,m,n are positive real numbers and a≠1 then logamn = logam + logan
5. If a,m,n are positive real numbers and a≠1 then logam/n = logam - logan
6. If a,m,n are positive real numbers and a≠1 then logamn = nlogam
7. If a,b,n are positive real numbers and a≠1, b≠1 then logam = logbm* logab
8. If a>1, then x>y => logax > logay
9. If 0y => logax < logay
e = 1+1/1! +1/2! + 1/3! + ¼! + …∞
e = lim n →∞ (1+(1/n)) n
If an = x, the logax = n.
Log (1=x) when |x|<1 = x-x²/2 +x³/3 - x4/4+…∞
No comments:
Post a Comment